Exercise 293

For the following exercises, use the change-of-base formula and either base 10 or base e to evaluate the given expressions. Answer in exact form and in approximate form, rounding to four decimal places.

$$
\log _{7} 82
$$

Solution

In order to evaluate this expression, set it equal to an unknown variable x.

$$
\log _{7} 82=x
$$

The base is 7 , the exponent is x, and the result is 82 .

$$
7^{x}=82
$$

To solve for x, take the logarithm of both sides (ln or log-it doesn't matter).

$$
\log 7^{x}=\log 82
$$

Use the property of logarithms that brings the exponent down in front.

$$
x \log 7=\log 82
$$

Divide both sides by $\log 7$ to solve for x.

$$
x=\frac{\log 82}{\log 7} \approx 2.2646
$$

